Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
J Nat Med ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668831

RESUMEN

Rhododendri Mollis Flos (R. mole Flos), the dried flowers of Rhododendron mole G. Don, have the ability to relieve pain, dispel wind and dampness, and dissolve blood stasis, but they are highly poisonous. The significance of this study is to explore the analgesic application potential of R. mole Flos and its representative component. According to the selected processing methods recorded in ancient literature, the analgesic activities of wine- and vinegar-processed R. mole Flos, as well as the raw product, were evaluated in a writhing test with acetic acid and a formalin-induced pain test. Subsequently, the HPLC-TOP-MS technique was utilized to investigate the changes in active components before and after processing once the variations in activities were confirmed. Based on the results, rhodojaponin VI (RJ-Vl) was chosen for further study. After processing, especially in vinegar, R. mole Flos did not only maintain the anti-nociception but also showed reduced toxicity, and the chemical composition corresponding to these effects also changed significantly. Further investigation of its representative components revealed that RJ-VI has considerable anti-nociceptive activity, particularly in inflammatory pain (0.3 mg/kg) and peripheral neuropathic pain (0.6 mg/kg). Its toxicity was about three times lower than that of rhodojaponin III, which is another representative component of R. mole Flos. Additionally, RJ-VI mildly inhibits several subtypes of voltage-gated sodium channels (IC50 > 200 µM) that are associated with pain or cardiotoxicity. In conclusion, the chemical substances and biological effects of R. mole Flos changed significantly before and after processing, and the representative component RJ-VI has the potential to be developed into an effective analgesic.

3.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561677

RESUMEN

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Lamiales , Filogenia , ADN Mitocondrial/genética , Lamiales/genética , Mitocondrias/genética
5.
Inflamm Bowel Dis ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309715

RESUMEN

BACKGROUND AND AIMS: Fecal incontinence (FI) is a common complaint that greatly affects the quality of life of patients with Crohn's disease (CD) and is associated with the clinical characteristics of CD. We aimed to identify risk factors related to FI and construct a risk prediction model for FI in patients with CD. METHODS: This retrospective study included 600 Chinese patients with CD from 4 IBD centers between June 2016 and October 2021. The patients were assigned to the training (n = 480) and testing cohorts (n = 120). Two nomograms were developed based on the logistic regression and Cox regression models to predict the risk factors for FI in patients with CD. The discriminatory ability and accuracy of the nomograms were evaluated using the receiver operating characteristic (ROC) curves and the area under the ROC curves (AUCs). Additionally, the Kaplan-Meier survival curve was also used further to validate the clinical efficacy of the Cox regression model. RESULTS: The overall prevalence of FI was 22.3% (n = 134 of 600). In the logistic regression model, age at diagnosis (odds ratio [OR], 1.032; P = .033), penetrating behavior of disease (OR, 3.529; P = .008) and Perianal Disease Activity Index score >4 (OR, 3.068; P < .001) were independent risk factors for FI. In the Cox regression model, age at diagnosis (hazard ratio [HR], 1.027; P = .018), Montreal P classification (HR, 2.608; P = .011), and Perianal Disease Activity Index score >4 (HR, 2.190; P = .001) were independent predictors of the prevalence of FI over time. Two nomograms were developed to facilitate risk score calculation, and they showed good discrimination ability according to AUCs. CONCLUSIONS: In this study, we identified 4 risk factors related to the prevalence of FI and developed 2 models to effectively predict the risk scores of FI in CD patients, helping to delay the course of FI and improve the prognosis with timely intervention.


In this retrospective multicenter study, we identified 4 risk factors related to the prevalence of fecal incontinence and developed 2 models to effectively predict the risk scores of fecal incontinence in Crohn's disease patients, helping to improve prognosis with timely intervention.

6.
Int J Pharm ; 653: 123929, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38387817

RESUMEN

Oxidative stress plays a crucial role in steroid-induced osteonecrosis of the femoral head (SONFH). Although several antioxidant strategies have been investigated for treating SONFH, their antioxidant efficiencies and therapeutic effects remain unsatisfactory. Here, we developed a selenium nanoparticles/carboxymethyl chitosan/alginate (SeNPs/CMC/Alg) antioxidant hydrogel and evaluated its ability to treat SONFH. In vitro assays indicated that the SeNPs/CMC/Alg hydrogel exhibited excellent properties, such as low cytotoxicity, sustained SeNPs release, and favorable antioxidant activity. Under oxidative stress, the SeNPs/CMC/Alg hydrogel promoted reactive oxygen species (ROS) elimination and enhanced the osteogenic and proangiogenic abilities of bone marrow mesenchymal stem cells (BMSCs). After establishing a rabbit model of SONFH, the SeNPs/CMC/Alg hydrogel was transplanted into the femoral head after core decompression (CD) surgery. Radiographic and histological analyses revealed that the hydrogel treatment alleviated SONFH by eliminating ROS and promoting osteogenesis and angiogenesis compared to those in the CD and CMC/Alg groups. In vitro and in vivo studies indicated that the Wnt/ß-catenin signaling pathway was activated by the SeNPs/CMC/Alg hydrogel in both hydrogen peroxide-conditioned BMSCs and necrotic femoral heads. These findings indicate that local transplantation of the SeNPs/CMC/Alg hydrogel is beneficial for treating SONFH, as it promotes ROS elimination and activation of the Wnt/ß-catenin signaling pathway.


Asunto(s)
Quitosano , Nanopartículas , Osteonecrosis , Selenio , Animales , Conejos , Antioxidantes , Selenio/farmacología , Cabeza Femoral/patología , Especies Reactivas de Oxígeno , Alginatos/efectos adversos , Quitosano/efectos adversos , Hidrogeles/efectos adversos , Osteonecrosis/inducido químicamente , Osteonecrosis/tratamiento farmacológico , Osteonecrosis/patología , Esteroides
8.
Mol Biotechnol ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372878

RESUMEN

Sorafenib (SOR) is the first-line chemotherapeutic therapy for hepatocellular carcinoma (HCC) treatment, but SOR resistance is a key factor affecting the therapeutic effect. Emerging studies have suggested that circular RNAs (circRNAs) play an important role in the development of drug resistance in HCC cells. This paper aimed to elucidate the potential role and molecular mechanism of circRNA Scm polycomb group protein homolog 1 (circSCMH1) in SOR-resistant HCC cells. CircSCMH1, microRNA-485-5p (miR-485-5p), and hematological and neurological expressed 1 (HN1) contents were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK8) assay was adopted to detect the SOR sensitivity of cells. Cell proliferation, migration, invasion, and apoptosis were assessed using colony formation, 5-Ethynyl-2'-deoxyuridine (EdU), transwell, and flow cytometry assays. Glucose metabolism was analyzed using commercial kits. HN1, B cell lymphoma-2 (Bcl-2), and Bcl-2-associated X (Bax) protein levels were assessed using western blot. Binding between miR-485-5p and circSCMH1 or HN1 was verified using a dual-luciferase reporter. Xenograft tumor model was used to explore the function of circSCMH1 in vivo. CircSCMH1 expression and HN1 abundances were increased, but the miR-485-5p level was reduced in SOR-resistant HCC tissues and cells. Deficiency of circSCMH1 enhanced SOR sensitivity by suppressing cell proliferation, migration, invasion, and glucose metabolism and inducing cell apoptosis in SOR-resistant HCC cell lines (Huh7/SOR and Hep3B/SOR). Mechanistically, circSCMH1 sponged miR-485-5p to positively regulate HN1 expression. Importantly, circSCMH1 depletion inhibited tumor growth and increased SOR sensitivity in vivo. CircSCMH1 promoted SOR resistance in HCC cells at least partly through upregulating HN1 expression by sponging miR-485-5p. These findings elucidated a new regulatory pathway of chemo-resistance in SOR-resistant HCC cells and provided a possible circRNA-targeted therapy for HCC.

9.
J Agric Food Chem ; 72(8): 4246-4256, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38317352

RESUMEN

A novel yeast-mediated hydrogenation was developed for the synthesis of neohesperidin dihydrochalcone (NHDC) in high yields (over 83%). Moreover, whole-cell catalytic hydrolysis was also designed to hydrolyze NHDC into potential sweeteners, hesperetin dihydrochalcone-7-O-glucoside (HDC-G) and hesperetin dihydrochalcone (HDC). The biohydrogenation was further combined with whole-cell hydrolysis to achieve a one-pot two-step biosynthesis, utilizing yeast to hydrogenate C═C in the structure, while Aspergillus niger cells hydrolyze glycosides. The conversion of NHDC and the proportion of hydrolysis products could be controlled by adjusting the catalysts, the components of the reaction system, and the addition of glucose. Furthermore, yeast-mediated biotransformation demonstrated superior reaction stability and enhanced safety and employed more cost-effective catalysts compared to the traditional chemical hydrogenation of NHDC synthesis. This research not only provides a new route for NHDC production but also offers a safe and flexible one-pot cascade biosynthetic platform for the production of high-value compounds from citrus processing wastes.


Asunto(s)
Chalconas , Hesperidina , Hesperidina/análogos & derivados , Saccharomyces cerevisiae , Hidrólisis , Saccharomyces cerevisiae/metabolismo , Estudios de Factibilidad , Hesperidina/química , Biotransformación
10.
Sci Rep ; 14(1): 2581, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297067

RESUMEN

Coronavirus disease 2019 (COVID-19) continues to impact global public health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become less virulent as it mutates, prompting China to ease restrictions at the end of 2022. With the complete reopening, a surge in COVID-19 cases has ensued. Therefore, we conducted a study to explore the correlation between plasma antibody levels and baseline conditions or clinical outcomes in severe and critical patients. We collected the basic information of 79 included patients. Enzyme-linked immunosorbent assay (ELISA) tests were performed on plasma samples. The receptor-binding domain (RBD) IgG antibody level of the mild group was significantly higher than that of the severe/critical group (P = 0.00049). And in the severe/critical group, there existed an association between plasma antibody levels and age (P < 0.001, r = - 0.471), as well as plasma antibody levels and vaccination status (P = 0.00147, eta2 = 0.211). Besides, the level of plasma antibody seemed to be moderately correlated with the age, indicating the need for heightened attention to infections in the elderly. And plasma antibody levels were strongly associated with vaccination status in the severe/critical patients.


Asunto(s)
COVID-19 , Humanos , Anciano , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoglobulina G , Ensayo de Inmunoadsorción Enzimática
11.
ArXiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38259343

RESUMEN

Large language models (LLMs) are a class of artificial intelligence models based on deep learning, which have great performance in various tasks, especially in natural language processing (NLP). Large language models typically consist of artificial neural networks with numerous parameters, trained on large amounts of unlabeled input using self-supervised or semi-supervised learning. However, their potential for solving bioinformatics problems may even exceed their proficiency in modeling human language. In this review, we will present a summary of the prominent large language models used in natural language processing, such as BERT and GPT, and focus on exploring the applications of large language models at different omics levels in bioinformatics, mainly including applications of large language models in genomics, transcriptomics, proteomics, drug discovery and single cell analysis. Finally, this review summarizes the potential and prospects of large language models in solving bioinformatic problems.

12.
Acta Pharmacol Sin ; 45(1): 87-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679644

RESUMEN

Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 µM) or MCU inhibitor Ru360 (10 µM). MCU activator kaempferol (10 µM) or calpain activator dibucaine (500 µM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.


Asunto(s)
Enfermedad de Parkinson , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Calpaína , Remodelación Ventricular , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas , Atrofia , Fibrosis , Proteínas de la Membrana/metabolismo
13.
Nucleic Acids Res ; 52(D1): D1042-D1052, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953308

RESUMEN

StemDriver is a comprehensive knowledgebase dedicated to the functional annotation of genes participating in the determination of hematopoietic stem cell fate, available at http://biomedbdc.wchscu.cn/StemDriver/. By utilizing single-cell RNA sequencing data, StemDriver has successfully assembled a comprehensive lineage map of hematopoiesis, capturing the entire continuum from the initial formation of hematopoietic stem cells to the fully developed mature cells. Extensive exploration and characterization were conducted on gene expression features corresponding to each lineage commitment. At the current version, StemDriver integrates data from 42 studies, encompassing a diverse range of 14 tissue types spanning from the embryonic phase to adulthood. In order to ensure uniformity and reliability, all data undergo a standardized pipeline, which includes quality data pre-processing, cell type annotation, differential gene expression analysis, identification of gene categories correlated with differentiation, analysis of highly variable genes along pseudo-time, and exploration of gene expression regulatory networks. In total, StemDriver assessed the function of 23 839 genes for human samples and 29 533 genes for mouse samples. Simultaneously, StemDriver also provided users with reference datasets and models for cell annotation. We believe that StemDriver will offer valuable assistance to research focused on cellular development and hematopoiesis.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Redes Reguladoras de Genes , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Reproducibilidad de los Resultados , Bases del Conocimiento , Linaje de la Célula
14.
Nucleic Acids Res ; 52(D1): D822-D834, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37850649

RESUMEN

Aging entails gradual functional decline influenced by interconnected factors. Multiple hallmarks proposed as common and conserved underlying denominators of aging on the molecular, cellular and systemic levels across multiple species. Thus, understanding the function of aging hallmarks and their relationships across species can facilitate the translation of anti-aging drug development from model organisms to humans. Here, we built AgeAnnoMO (https://relab.xidian.edu.cn/AgeAnnoMO/#/), a knowledgebase of multi-omics annotation for animal aging. AgeAnnoMO encompasses an extensive collection of 136 datasets from eight modalities, encompassing 8596 samples from 50 representative species, making it a comprehensive resource for aging and longevity research. AgeAnnoMO characterizes multiple aging regulators across species via multi-omics data, comprehensively annotating aging-related genes, proteins, metabolites, mitochondrial genes, microbiotas and age-specific TCR and BCR sequences tied to aging hallmarks for these species and tissues. AgeAnnoMO not only facilitates a deeper and more generalizable understanding of aging mechanisms, but also provides potential insights of the specificity across tissues and species in aging process, which is important to develop the effective anti-aging interventions for diverse populations. We anticipate that AgeAnnoMO will provide a valuable resource for comprehending and integrating the conserved driving hallmarks in aging biology and identifying the targetable biomarkers for aging research.


Asunto(s)
Envejecimiento , Bases del Conocimiento , Multiómica , Animales , Humanos , Envejecimiento/genética , Biomarcadores , Longevidad/genética
15.
Acta Pharm Sin B ; 13(12): 4823-4839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045047

RESUMEN

Clinical application of doxorubicin (DOX) is heavily hindered by DOX cardiotoxicity. Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response (DDR), although the mechanism(s) involved remains to be elucidated. This study evaluated the potential role of TBC domain family member 15 (TBC1D15) in DOX cardiotoxicity. Tamoxifen-induced cardiac-specific Tbc1d15 knockout (Tbc1d15CKO) or Tbc1d15 knockin (Tbc1d15CKI) male mice were challenged with a single dose of DOX prior to cardiac assessment 1 week or 4 weeks following DOX challenge. Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbc1d15 were used for Tbc1d15 overexpression or knockdown in isolated primary mouse cardiomyocytes. Our results revealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality, the effects of which were ameliorated and accentuated by Tbc1d15 deletion and Tbc1d15 overexpression, respectively. DOX overtly evoked apoptotic cell death, the effect of which was alleviated and exacerbated by Tbc1d15 knockout and overexpression, respectively. Meanwhile, DOX provoked mitochondrial membrane potential collapse, oxidative stress and DNA damage, the effects of which were mitigated and exacerbated by Tbc1d15 knockdown and overexpression, respectively. Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Liquid chromatography-tandem mass spectrometry and co-immunoprecipitation denoted an interaction between TBC1D15 and DNA-PKcs at the segment 594-624 of TBC1D15. Moreover, overexpression of TBC1D15 mutant (∆594-624, deletion of segment 594-624) failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs, DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type. However, Tbc1d15 deletion ameliorated DOX-induced cardiomyocyte contractile anomalies, apoptosis, mitochondrial anomalies, DNA damage and cytosolic DNA-PKcs accumulation, which were canceled off by DNA-PKcs inhibition or ATM activation. Taken together, our findings denoted a pivotal role for TBC1D15 in DOX-induced DNA damage, mitochondrial injury, and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention, a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity.

16.
Am J Clin Exp Urol ; 11(6): 530-541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148940

RESUMEN

Prostate cancer is the leading cause of cancer death after lung cancer in men. Recent studies showed that aberrant metabolic pathways are involved in prostate cancer development and progression. In this study, we performed a systemic analysis of glycolytic enzyme gene expression using the TCGA-PRAD RNAseq dataset. Our analysis revealed that among 25 genes, only four genes (HK2/GPI/PFKL/PGAM5) were significantly upregulated while nine genes (HK1/GCK/PFKM/PFKP/ALDOC/PGK1/PGAM1/ENO2/PKM) were downregulated in primary prostate cancer tissues compared to benign compartments. Among these 13 altered genes, four genes (ENO2/ALDOC/GPI/GCK) exhibited strong diagnostic potential in distinguishing malignant and benign tissues. Meanwhile, GPI expression exerted as a prognostic factor of progression-free and disease-specific survival. PFKL and PGAM5 gene expressions were associated with AR signaling scores in castration-resistant patients, and AR-targeted therapy suppressed their expression. In LuCap35 xenograft tumors, PFKL and PGAM5 expression was significantly reduced after animal castration, confirming the AR dependency. Conversely, GCK/PKLR genes were significantly associated with neuroendocrinal progression, representing two novel neuroendocrinal biomarkers for prostate cancer. In conclusion, our results suggest that GPI expression is a strong prognostic factor for prostate cancer progression and survival while GCK/PKLR are two novel biomarkers of prostate cancer progression to neuroendocrinal status.

17.
Cell Mol Biol Lett ; 28(1): 96, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017385

RESUMEN

PSA is a type of proto-oncogene that is specifically and highly expressed in embryonic and prostate cancer cells, but not expressed in normal prostate tissue cells. The specific expression of prostate-specific antigen (PSA) is found to be related with the conditional transcriptional regulation of its promoter. Clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-KRAB is a newly developed transcriptional regulatory system that inhibits gene expression by interupting the DNA transcription process. Induction of CRISPR-dCas9-KRAB expression through the PSA promoter may help feedback inhibition of cellular PSA gene expression via single guide RNA (sgRNA), thereby monitoring and suppressing the malignant state of tumor cells. In this study, we examined the transcriptional activity of the PSA promoter in different prostate cancer cells and normal prostate epithelial cells and determined that it is indeed a prostate cancer cell-specific promoter.Then we constructed the CRISPR-dCas9-KRAB system driven by the PSA promoter, which can inhibit PSA gene expression in the prostate cancer cells at the transcriptional level, and therefore supress the malignant growth and migration of prostate cancer cells and promote their apoptosis in vitro. This study provides a potentially effective anti-cancer strategy for gene therapy of prostate cancer.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias de la Próstata , Humanos , Masculino , Antígeno Prostático Específico/genética , Próstata , ARN Guía de Sistemas CRISPR-Cas , Retroalimentación , Neoplasias de la Próstata/genética , Sistemas CRISPR-Cas/genética
18.
JACC Basic Transl Sci ; 8(9): 1215-1239, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791317

RESUMEN

Mitochondrial dysfunction is suggested to be a major contributor for the progression of heart failure (HF). Here we examined the role of syntaxin 17 (STX17) in the progression of HF. Cardiac-specific Stx17 knockout manifested cardiac dysfunction and mitochondrial damage, associated with reduced levels of p(S616)-dynamin-related protein 1 (DRP1) in mitochondria-associated endoplasmic reticulum membranes and dampened mitophagy. Cardiac STX17 overexpression promoted DRP1-dependent mitophagy and attenuated transverse aortic constriction-induced contractile and mitochondrial damage. Furthermore, STX17 recruited cyclin-dependent kinase-1 through its SNARE domain onto mitochondria-associated endoplasmic reticulum membranes, to phosphorylate DRP1 at Ser616 and promote DRP1-mediated mitophagy upon transverse aortic constriction stress. These findings indicate the potential therapeutic benefit of targeting STX17 in the mitigation of HF.

19.
Int J Biol Macromol ; 253(Pt 3): 126902, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37714233

RESUMEN

Roselle is rich in an extensive diversity of beneficial substances, including phenolic acids, amino acids, anthocyanins, vitamins, and flavonoids. Herein, the chemical constituents in Roselle extract (RE) were identified by UPLC-DAD-QTOF-MS. Besides, its inhibitory effects on three digestive enzymes, i.e. α-amylase, α-glucosidase, and pancreatic lipase, were investigated in both in vitro and in vivo. Thirty-three constituents including hibiscus acid, 18 phenolic acids, 2 anthocyanins and 12 flavonoids were identified. The anthocyanins content in RE was 21.44 ± 0.68 %, while the contents of chlorogenic acids, rutin and quercetin were 17.76 ± 2.28 %, 0.31 ± 0.01 % and 0.32 ± 0.01 %, respectively. RE inhibited pancreatic lipase in a non-competitive way with an IC50 value of 0.84 mg/mL. Besides, it demonstrated a mixed-type inhibition on both α-glucosidase and α-amylase with IC50 values of 0.59 mg/mL and 1.93 mg/mL, respectively. Fluorescence quenching assays confirmed the binding of RE to the enzyme proteins. Furthermore, rats pre-treated with RE at doses of 50 and 100 mg/kg body weight (bwt) exhibited significant reductions in fat absorption and improvements in fat excretion through feces. Additionally, the in vivo study revealed that RE was effective in suppressing the increase of blood glucose after starch consumption, while its effects on maltose and sucrose consumption were relatively weak.


Asunto(s)
Antocianinas , Hibiscus , Ratas , Animales , Hibiscus/química , alfa-Glucosidasas/metabolismo , Inhibidores Enzimáticos/química , Flavonoides/farmacología , alfa-Amilasas/química , Lipasa , Extractos Vegetales/química , Fármacos Gastrointestinales , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química
20.
Food Res Int ; 172: 113097, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689869

RESUMEN

This study aimed to elucidate the mechanism of acid-induced gelation in egg-based yoghurt by investigating the dynamic changes in physicochemical properties, texture, rheology, and microstructure of the gel during fermentation, combined with the role of intermolecular forces in gel formation. Results showed that protein aggregation and cross-linking increased as pH decreased during fermentation. Gel hardness increased with fermentation, eventually reaching 11.36 g, while maintaining low fracturability. Water holding capacity (WHC) decreased from 91.77% to 73.13% during fermentation. Rheological testing demonstrated a significant increase in viscosity and dynamic moduli (G' and G''), consistent with the observation of a more compact microstructure by scanning electron microscopy (SEM) and particle size analysis. Furthermore, dynamic changes of surface hydrophobicity, sulfhydryl content, and intermolecular forces suggested that hydrophobic interactions were likely the main driving force for gel formation, as well as that hydrophobic interactions and disulfide bonds played an important role in the maintenance and construction of the gel network structure. Although ionic bonds and hydrogen bonds also had an effect on the gel formation of egg-based yoghurt, their contributions were not significant. The study provided new insights for the development of novel egg-based fermentation foods and the research of acid-induced protein gels, and also contributed to the deep exploitation and utilization of poultry eggs.


Asunto(s)
Huevos , Yogur , Fermentación , Geles , Dureza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...